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The paper discusses analytically the nonlinear wave reflection caused by a circular 
cylinder, submerged under a free surface in water of infinite depth. For mono- 
chromatic incident waves it is shown that there is no reflection of order m and 
frequency mw (m integer). This means that the dominant part of the mode of 
frequency mw is not reflected. For bichromatic incident waves it is found that the 
second-order wave with ‘sum frequency ’ has no reflection. It is shown that the x- and 
y-components of the oscillatory force of order m and frequency mw have identical 
amplitudes and a phase-difference in. A corresponding result is also true for 
bichromatic waves. 

1. Introduction 
Normally a body submerged under a free surface reflects part of the incident wave 

motion, except possibly for some special values of the incident frequency. It was 
shown, however, by Dean (1948) that if the submerged body is a circular cylinder 
with axis parallel to the crests of the incident wave, and the fluid layer is of infinite 
depth, the first-order (in wave amplitude) coefficient of reflection is zero for all 
incident frequencies and all submergences of the body. A complete solution of the 
linear problem was given by Ursell (1950) who applied a multipole expansion. 

Recently Vada (1987) solved numerically the first- and second-order diffraction 
problem in two dimensions for a submerged cylinder of arbitrary form. He calculated 
the first- and second-order forces on the body by direct pressure integration, and the 
second-order reflection and transmission coefficients. In particular, he noted that the 
magnitude of the second-order reflection coefficient for a submerged circular cylinder 
was of the same order as the accuracy in his numerical scheme. Very recently Friis 
(1990), McIver & McIver (1990) and Wu (1991), independently, have shown 
analytically that the second-order reflection coefficient for the submerged circular 
cylinder is identically zero. Friis (1990) uses a method applied earlier by Grue & Palm 
(1985) for a submerged circular cylinder in a uniform current, whereas the two other 
papers are both based on a formula for the second-order reflection coefficient 
expressed by the first-order solution only. 

In the present paper these results will be generalized. We shall consider the 
reflection of a Fourier mode with frequency mw (the m-harmonic mode) where m is 
an arbitrary positive number and w the frequency of the incident wave. This mode 
is composed of terms of order m, m+ 2, m + 4, etc. The dominant term is the lowest- 
order one, i.e. the term of order m. We shall prove that the reflection of this term is 
identically zero. 

We shall also consider incident bichromatic waves (and shortly also multi- 
chromatic waves) whereby we are able to study second-order effects due to an 
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arbitrary incident wave spectrum. Lately, there has been considerable interest in this 
problem, mainly due to the fact that a moored, floating body - a ship or oil platform, 
for instance - may be in resonance with the second-order load, with a frequency of 
either the difference or the sum of the frequencies of two incident waves. We shall 
restrict ourselves to  consider only sum frequencies and show that the reflection 
coefficient for the second-order motion is zero. It is discussed below how this result 
may be generalized to higher-order terms. 

Ogilvie (1963) has shown that in the first-order problem the oscillatory forces in 
the x- and y-directions have identical amplitudes and a phase difference an. This 
result will be extended to be valid to second order also for incident bichromatic 
waves when only sum frequencies are considered. The result will be further extended 
to any m-harmonic mode of order m. 

Section 2 contains the formulation of the problem. In $ 3  the first-order problem, 
slightly generalized for later use, is discussed. In $4 we consider the reflection to 
second and higher order for monochromatic incident waves, and in $ 5  the reflection 
for bichromatic incident waves. The oscillatory forces are discussed in $6, and $7  is 
summary and discussion. 

2. Formulation of the problem 
We consider first an incident two-dimensional periodic wave with amplitude A and 

frequency w which is scattered by a submerged circular cylinder with radius a and 
contour C, and with axis parallel to the wave crests (cf. figure 1) .  The fluid is assumed 
to be incompressible and the motion irrotational. A velocity potential 6 satisfying 
the Laplace equation then exists. 

The boundary conditions on the free surface are 

d , , + g B , + 2 v ~ . v ~ ~ + ~ v ~ . v ( v ~ . v ~ )  = 0 (Y = i ) ,  (1) 

g?j = -6 , - i (VB)2  (Y = $), (2) 

where i denotes the elevation of the free surface. X and Y are defined in figure 1,  and 
t denotes time. We assume that the fluid 
This gives the additional conditions 

L O  

-- - 0  
a6 
an 

” 
depth is infinite and the cylinder restrained. 

( Y = -  a), 

( X ,  Y )  E c. 
(3) 

(4) 

Here n denotes the normal derivative, chosen positive out of the fluid. We introduce 
the dimensionless quantities 

where $ is pressure, p is density and P is the force per unit length of the cylinder. It 
is assumed that e is small and that the potential can be expanded in a series 

00 

@ = 
1 
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FIGURE 1. Definition sketch. 

8 is proportional to the Keulegansarpenter number @ / a )  R exp ( - K h ) .  We also 
require that the wave steepness EK is small, which restricts the magnitude of K to be 
O(1). The motion is considered to be periodic in time so we may write 

(7) 
(8) 
(9) 

where i is the imaginary unit and m an arbitrary integer. do is the velocity potential 
for the incident wave (with unit amplitude), given by 

@1 = Re { ( $ O ( X ,  !/) + $D(X> y)) eiT}? 
@ z  = Re {$ZO(XI Y) + $ Z Z k  Y) eZiT)3 

@m = Re {$mo(Z, Y) + $ m l ( X ,  Y) eiT + * * *$mm(X, Y) eimr), 

(10) 

where z = z+iy. (11) 

i 
K ’  

Ky-iKz = -e-iKz 
$O@? Y) = -e K 

The boundary conditions for $o, $D, . . . , $mm are obtained by introducing (7)-(9) in 
(1) and (2) and developing (1) and (2) in a Taylor series around y = 0, eliminating 7. 
For $D and $mm we obtain the following boundary conditions: 

( $ D ) v - ~ $ D  = (y = O ) ,  (12) 
$ D = o  (Y=- -ao) ,  (13)  

($mm)g-m2K$mm = f m ( Z )  (Y = 01, (14) 
q5,, = 0 (y = - G o ) .  (15) 

Introducing $1 defined by $1 = $ o + $ m  (16) 
we also have ( $ l ) U - - W l  = 0 (Y = O ) ,  (17) 

$1 = 0 (y= - - ) ,  (18) 

-- a$l-o, G = o  ( X , Y ) E C .  
an an 

Here we only give f m ( x )  for m = 2, 
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In  addition the potentials must satisfy the Laplace equation and the radiation 
conditions at  x = f 00. The radiation conditions for $,, are 

( $ D ) , + q b D  = 0 (x = fa), (21 ) 
stating that the motion a t  infinity is an outgoing wave. From (21) and (20) we get 

limf2(x) = 0, lim f2(x) = 4iKR,, 
X+m x+-m 

where R, is the first-order reflection coefficient, and from (14) (with m = 2) and (22), 
assuming outgoing wal- .s a t  infinity (Vada 1987), 

We note that for R, = 0, c,622 at x = f co describes a free, outgoing wave. 
The time-dependence of the pressure, the force and the free-surface elevation is 

separated out in the same way as for the velocity potential. From the Bernoulli 
equation we obtain 

P , @ ,  y) = -Ki$,, 

p 2 2 ( ~ ,  9) = -2Ki$22-iK(V$1)2, 
(25 1 
(26 1 

where p ,  is the first-order pressure and p,, the oscillatory part of the second-order 
pressure. 

The surface elevation is found from the dynamic boundary condition (2) to be 

r 1 ( 4  = -W,k 01, (27) 

(28) 
Introducing in (28) T,, T, and R,, the first- and second-order transmission coefficients 
and the second-order reflection coefficient, respectively, we find (Vada 1987) 

(29) 

(x = - 00). (30) 

r 2 2 ( 4  = -K(2i$22 + W2($J2 +a($,):, ly-0. 

7 22 2 
(x) = T e-i4Kz - - $T:e-i2K5 (x = co), 

7 (x) = R2ei4KZ-1 &e-i2Kx-l$:~ei2Kx 
22 

3. The first-order problem 
We consider in this section the first-order problem with an incoming wave which, 

for later reference, has a somewhat generalized form. The Green function for an 
oscillating source fulfilling the Laplace equation, the boundary conditions at  y = 0 
and y = - co and the radiation conditions is given by Wehausen 6 Laitone (1960) as 

G*(x, y, x’, y‘,K, 7) = Re (G(x,  y, x’, y’,K) eiwr), 

G(x,  y, x‘, y’,K) = log r/r* + G’(x, y, x’, y’,K) 

(31) 

(32) where 

with 

The contour of integration is deformed above the pole in the complex k-plane. 
(x’, y’) denote the source coordinates and (x, y) the space coordinates. r and r* are 
given by 

r = ( (x -~ ’ )~+(y -y ’ )~ ) t ,  (34) 

r* = ((z-s’)~+ ( ~ + y ’ ) ~ ) t ,  (35) 



Nonlinear wave rejection from a submerged cylinder 

A 

53 

OmC B 
V 

._ 

- - F0 
I I 
I x = - w  I x = w  

- - 

- - - .Y=-w - - -  
FIGURE 2. Path of integration 

and a bar denotes complex conjugate ; z is defined by (1 1) .  The asymptotic values of 
(32) are found by contour integration to be 

( x  = a), (36) 

G = 2in eiKz--IK*’ ( x  = - a ). (37) 

G = 2ixe-iKZ+iKP 

We obtain a formula for $, by applying Green’s theorem for the Green function (32) 
and $1 on the closed figure indicated in figure 2. Using 

351=iK$,-2iK$0 ax ( x = - a ) ,  (38) 

%=-iK$, ax ( x = a )  (39) 

together with (17), (18) and (19), and evaluating the integral at x = - 00 by applying 
the asymptotic value (37) of the Green function, we obtain 

(40) 

(41) 

aG 
$l,ds’+n$1= 2~$o ( ( x , Y ) E ~ ) ,  -Ic an 

JC$ ,gds ’  = W $ , - $ o )  = 2R$D ( ( X , Y ) E V ,  

where a/an‘ denotes the normal derivatives out of the fluid domain. 
At the contour C we have 

z = eie-ih, az/an = -ev ( z  = C). (42) 

(43) 

-- - 2 a e - i ~ * + i ~ r e - i ~  (Z’Ec)  ( x  = a). (44) 

Hence from (36) and (37) 

_-  a‘ -- 2 a  eiKZ-iKz‘ eiv (2’ E C )  ( x  = - 00 ), 
an‘ 

an’ 

Equation (43) introduced in (41) then gives 

$D = -KeiKZ $, e-iKz’+ib dB’ (z’ E C) ( x  = - a). (45) 

We assume that $,(el) may be developed in a Fourier series 
00 Q) 

$,(el) = C A , ,  eimd + B lm e-imY, 
0 1 

where A,, and B,, are complex constants. 
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Developing exp(-iKz') in a power series and using (42), we note that in the 
integral (45) only B,,-terms can give contributions. We shall show that Blm = 0, 
which gives R, = 0. 

For later use we generalize (40), writing 

- J c $ , g d # + n A  =f(eie)((X,Y)EC)7 (47) 

wheref(z) must have an expansion in powers zm, where m 2 0 is integer. Obviously 
(40) is a special case of (47). We Fourier transform the integral equation by 
multiplying the equation with (1/2n) exp (ime), where m is positive, and integrating 
from 0 to 2 ~ .  The Fourier transform of the right-hand side of (47) is zero. The last 
term on the left has the Fourier transform 

dim. (48) 

We split aG/an' according to (32) and consider first a/an'(log r ) ,  which may be written 

Hence this term makes no contribution to  the Fourier transform of (47). 
The next term may be written 

eib" 

(50) 
e-i8' 1 -_  1 a9  1 -_ a logr* = Re,- - - - 

an' z - z an' 2 2ih + e-ie - eie 2 2ih + e-ie - eie * 

Developing the last term in a power series, we find 

eitY cis' 03 * n 
-_ 1 (e-iO-eiB')n. 

22ih+e-ie-eie=-4ihT(&) 

We notice that this sum contains terms proportional to e-ine and therefore makes a 
contribution to  the Fourier transform. The coefficients are of the form cine (not 
e-ine). Hence this contribution leads only to B,, - terms and no A,,-terms, and will 
be of the form 

' 

m 

Z P n r n B l n  (m = 1, a). (52) 
1 

Similarly i t  is seen that the first term in (50) makes no contribution to the Fourier 
transform. 

We next consider G' and focus on the first integral on the right-hand side of (33). 
Developing the exponential function in a power series, we obtain 

(ik)n(e-ie-ei8')n dk. (53) 

Exactly as in the previous discussion this sum leads to  a contribution of the form (52) 
whereas the remaining part of (33) gives no contribution. 

Collecting the terms obtained by the Fourier transform of (47), we have 



Nonlinear wave reflection from a submerged cylinder 55 

where p,, now is the sum of the contributions from (50) and (53). Assuming that the 
infinite determinant is non-vanishing (there are no irregular frequencies here since 
the body is fully submerged) and that the series (52) is converging sufficiently 
strongly, it follows that B,, = 0 and thereby R, = 0. 

We thus have 
co 

q5,(8) = A,, cine. (55) 
0 

Utilizing (55) and the asymptotic values (43) and (44) for aG/an’, we find from (41) 
and (10) 

#1 = $o+q5D = - i (  e-iKz (x = a), (56) 

(x = -a), (57) q51 = q50 = Le-iKz 
K 

where 
m (Ki), 

h,(K) = 2x e-Kh C A, ,  ~ 

1 ( m - l ) ! .  

00 (Ki), 
h,(K) = 2x e-Kh Z A  Jm - , ( m - l ) ! ’  

For later use we define 

O0 (J2Ki), 
A J m  - g .(K) = 2x ePJPKh 

(m-l)! .  

(59) 

We also need q5, at y = 0.  At the free surface a/an’(log r / r*)  = 0 and G reduces to G .  
Introducing in (41) the formula (55) for q51, we notice that only the last term in (33) 
contributes to the integral. Changing the order of integration, we obtain 

i 1 m e-ikz 
$l(z,O) = -e-IKz+- - hl(k) dk. 

K 2xJ0  k-K 

4. The second- and higher-order waves 
Let us first consider the second-order wave q5,,. This potential fulfils the Laplace 

equation and the boundary conditions (14), (15) and (19). 
q522 is the complete second-order velocity potential with frequency 2w and contains 

in principle also the incident second-order (Stokes) wave. The velocity potential for 
the latter vanishes, however, since the fluid depth is infinite. The radiation conditions 
for q5,, are given by (23) and (24) with R, = 0, expressing that a t  1x1 = co the waves 
are free waves, travelling outwards. 

As in $3 we apply Green’s theorem. Now we choose as the Green function G,,  
defined by 

where G is defined by (32) and (33). 

vanishing at y = - a and q5,, fulfils (19), we obtain 
Using the facts that q5,, and G, satisfy the same radiation conditions, both are 

(63) 

$22 (64) 
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The second integral in these equations may be simplified considerably. First, in the 
formula for G,, logr/r* is zero. Furthermore, according to (61) $, at y = 0 is only a 
function of x through terms of the form exp ( -ik, x') where k, is positive. Hencef,(z) 
is a function of x only through terms of the form exp ( -i(k, + k,) x) where k, and k, 
are positive. It then follows (see the Appendix) that only the last integral in (33) 
makes a non-vanishing contribution. Changing the order of integration we find that 
(63) and (64) may be written 

where L ( k )  is the Fourier transform off&) defined by 
4) 

h(k) = / - J ( x )  eikx dx. (67) 

For k negative,h(k) = 0. Introducing in (65) the formula (42) for z, we note that (65) 
is of the same type as (47). Hence $,,(el) may be written 

m 

$,,(el) = zAznein@'. 
0 

The asymptotic value of $,, is obtained from (66) by applying contour integration 
on the last integral and using (68) in the first integral. Developing the exponential 
function in a power series, we obtain 

where g, is defined by (60). Hence the second-order reflection coefficient R, is zero. 
For later reference we need a formula for q5,, at y = 0. We introduce (68) into (66) 

and note that G,  may be replaced by G;1 since logr/r* = 0, and that only the last 
integral in (33) gives a non-vanishing contribution. Developing the exponential 
function in a power series, we obtain 

We then consider the third-order velocity potential with frequency 3w, #33, and 
derive first the radiation conditions. The boundary condition at y = 0 is, according 

wheref3(x) is obtained by developing (1) and (2) in Taylor series around y = 0. We 
notice thatf3(z) consists of terms of the form (i) V@.V@, and (a/ay)(VQi.V@,) 7, (ii) 
V@.V(V@.V@), (iii) (a/ay)(@,,+g@r)q and (a2/i3y2)(@tt+g@y)72. Here @is @, or the 
time-dependent part of @,. The terms (i) lead to terms of the form Vq5,.V#,, and 
(a/ay)(V$, .V$,)~, .  At 1x1 = 00 q5, and $,, are zero or a function of z only (see (56), 
(57) and (69), (70)). For arbitrary analytical functions F ( z )  and G(z), VF(z).VG(z) is 
identically zero. Hence at  1x1 = co the terms (i) vanish. For the same reason the terms 
(ii) are also zero at infinity. Since q5, and $22 at 1x1 = co are free waves in a fluid of 
infinite depth, Qtt + gQU and its y-derivatives are zero. Hence also the contribution 
from the terms (iii) vanish. 
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We thus end up at 1x1 = co with 

($33)g - 94533 = 0 (Y = 01, (73) 

which shows that the $33-waves are also free waves at infinity. Since the waves are 
generated at finite values of x, they must travel outwards and the radiation 
conditions are 

($33)2fi9K$33 = 0 (x = f 00). (74) 

The physical reason for (73) being a homogeneous equation is that and $22 are not 
reflected and, furthermore, that an incoming (Stokes) wave has no third-order 
potential with frequency 3w in a fluid layer of infinite depth. 

The procedure is now analogous to that applied for $22. We define the Green 
function 

(75) 

where G is defined by (32). Since $33 and G, satisfy the same radiation conditions, 
both are vanishing at y = - 00 and $33 fulfils (19), we obtain 

G3(x, y, x’, y’) = G(x, y, x’, y’, 9K), 

m 

(77) 
i3G j j 5 3 3 3 p q  G3(X,YIX’,0)f3(2’)dZ’ = 27c$,3 ( ( X , Y ) E V ) .  

-m 

From (71) we see that $2z(x) a t  y = 0 is a function of x only through terms of the form 
exp ( -ik, x) where k, is positive. Since $,(x) is also a function of x of the same form, 
i t  follows, exactly as for q522, that (76) and (77) may be written (see Appendix) 

whereh is the Fourier transform of f 3 .  Introducing in (78) the formula (42) for z, we 
see that (78) is of the same type as (47). Hence $33 takes the form 

The asymptotic form of $33 is found in exactly the same way as for q5z2. We obtain 

q533 = -i(&(9K) +g3(9K)) e-isKz (x = co), 
q533 = 0 (x = - 00). 

Hence the third-harmonic mode of third order is not reflected. 

for $22. We find 
Furthermore, $33 a t  y = 0 is obtained in the same way as we derived formula (71) 

We may now prove that the amplitude of the velocity potential of order m and 
frequency mu, $mm, is zero a t  x = - co. The boundary condition a t  y = 0 is given by 
(14). f,(x) consists of products of various q5,, (and where n < m. Let us assume 
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for the moment that q5nn for x = co is of the form of a constant times exp ( -in2Kz), 
for all n, and zero for x = - co . As in the discussion for n = 3, we divide f,(x) in three 
groups where groups (i) and (ii) consist of terms proportional to V@-V@ (or V@.V@,) 
and its y-derivatives. Since a t  1x1 = co all q5nn (and q51) are functions of z only, or zero, 
the contributions from these groups vanish. Furthermore, since &,, is assumed to be 
free waves a t  infinity and the fluid layer is of infinite depth, q5tt+g@1/ and all its 
y-derivatives are zero a t  y = 0. Hence we obtain 

(#mm)y-m2Kq5,m = 0 (y = 0, 1x1 = 00).  (84) 

(q5,,),i- im2Kq5,, = 0 ( x  = f 00).  (85) 

Similarly as for m = 3, we conclude that the radiation condition for q5,, is 

The physical reason for (84) being a homogeneous equation is that all q5nn (and 9,) 
have no reflection and that the incoming (Stokes) wave has no mode in the velocity 
potential of order m and frequency mu. 

Using now the Green function 

Gm(x, y, x/, Y’) = G(x ,  ~7 x’, y‘, m2K) (86) 
we obtain formulae identical to (76) and (77) except that subscript 3 is replaced by 
m. As a second assumption we now assume that all #nn(x ,  0 ) ,  n < m, are a function 
of x only through terms of the form exp ( -ikx) where k is positive. We then obtain, 
as for m = 3, 

The integral equation (87) is of the same type as (47) and we conclude that q5mm takes 
the form 

m 

q5rnm(e/) = x A r n n  eins’. (89) 
0 

From (89) and the asymptotic expressions for G ,  we obtain that the asymptotic 
forms of q5,, may be written 

q5,, = -i(fm(mzK) +grn(m2K)) e-irnPKz ( x  = a), (90) 
q5,, = 0 ( x  = -a). (91) 

Furthermore, a t  y = 0, q5mrn is given by 

The two assumptions we have made for #nn,  are true for n less than 4. Hence the 
results (89)-(92) are valid form = 4. Then they must also be true form = 5 ,  etc. and 
we conclude that they are valid for arbitrary m. 

The corresponding surface elevation vmm a t  x = - co is obtained by expanding (2) 
in a power series about y = 0. vmm consist of products of q51, #22, $33, . . . , q5,, and its 
derivatives. All these quantities are zero a t  x = - co, except q51 which is equal to #,,. 
Hence a t  x = - co vmrn has the value given by the incoming wave. Thus there is no 
reflection of the surface elevation of the m-harmonic mode of order m. 
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5. Reflection of incident bichromatic waves 
I n  recent years considerable interest has been shown in studying incident 

bichromatic waves. The main reason is that  an oscillating system, for instance a 
moored floating body, may perform oscillations with periods which are outside the 
linear wave spectrum. The second-order forces, however, include forces with 'sum- 
frequency' and 'difference-frequency ', and these may very well be in resonance with 
the oscillating system. 

We consider two incident waves with dimensionless amplitudes Al,A2 and 
dimensionless wavenumbers K, ,  K, ,  respectively. The velocity potentials of the 
incident waves are then given by 

(J  = 1,2) .  $J = Je-izKJ 
A i  

K J  
(93) 

Furthermore, let #) and $?) denote the velocity potentials for the total first-order 
waves. We know that the first-order reflection coefficients for the two waves are zero. 
We shall now show that the second-order reflection coefficients due to the sum- 
frequencies also vanish. Let & denote the corresponding velocity potential. The 
boundary condition a t  y = 0 may be written 

where 

(94) 

(95) 

with w1 and w, denoting the frequencies of the two incident waves. f '(2) is obtained 
from (1) and (2) and consists of products of q5i1) and $i2). Utilizing the asymptotic 
formulae (56) and (57) for $1') and #) we obtain thatf+(z)  = 0 for 1x1 = 00. This is 
because R, = 0 and the second-order velocity potential for the incoming wave with 
sum-frequencies is zero. As in $4  we conclude that the radiation condition for 9; is 

(q4;)zkiK+& = 0 (Z =*a). (96) 

(97) 

Following the procedure in $4 we use Green's theorem, choosing as Green function 

G;(%, y, x', y') = (4x7 y, xl, Y1, K + ) ,  

where G is defined by (32) and (33). Since q522 and G ,  satisfy the same radiation 
conditions, both are vanishing at y = - 00 and a/an(#;) = 0 a t  C ,  we obtain two 
equations similar to (63) and (64) for q5;. f+(x) may be written as products of #) and 
#) and their %-derivatives. With the same arguments as applied for $22, it follows 
that the two equations for & may be written 

where f+(k) is the Fourier transform off '(x). Introducing (42) we see that (98) is of 
the same form as (47). Hence #: is of the form 

3 FLM 233 
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Introducing (100) in (99) we obtain 

4: = -i(f+(K+) + hl (K+) )  e-iKfz (x = + a), (101) 

$ i = O  ( x = - a ) ,  (102) 
where hl is defined by (59), replacing A,, with Aim. Hence we have shown that the 
reflection coefficient for $l is zero. 

We can now proceed as in $ 4  and show that $l(x,O) has a form similar to (71) .  
Considering then three incident waves, with velocity potential 4: given by (93) where 
J is 1,  2 and 3, we may show that $: is zero a t  x = - co. $: is generated by products 
of $r), $lg) and $f) where r , s , t  are either 1,  2 or 3. More generally we will find that 
$2 = 0 a t  x = - 00 where m is an arbitrary positive number. 

6. The oscillatory forces 

oscillatory force. The x- and y-components of the force may be written 
We first consider an incident monochromatic wave. Let fl denote the first-order 

where i and j denote the unit vectors along the x- and y-axes, respectively. Applying 
formula (55) for $,, (103) and (104) take the form 

n o 0  

f i - i  = - @ i l  ~A,meims(eie+e-i8)d0, 

fi . j  = - Jr $ A lm eime(eie - e-is ) do, (106) 

which gives fi.i = -KniA,,, (107) 

f, * j  = KnA,,. (108) 

F,-i= Re(f,.ie") = Re(-inKA,,e"), (109) 

(1 10) 

Thus the x-component and the y-component of the first-order force have the same 
amplitude and a phase difference in. This result was derived by Ogilvie (1963), using 
a different approach. 

Introducing the time variation, the formulae take the form 

4-j = Re (fl-jeiT) = Re ( -  i f i ~  &T+$n). 

For the second-order oscillatory force, f2, we obtain from (26) 

f2.i = -2Ki $,* cosedB-iK (V$,)2cosOdB, (111) 

(112) 

JF' r 
f, .j = - 2Ki /r $,, sin 0 dB - iK (V$$ sin 0 do. r 

The last term in ( 1 1 )  may, using the boundary condition (19), be written 

J O  n - ~ . n ' = l  
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which, by changing the order of summation and integration, is seen to be zero. 
Similarly we find that the last term in (1 12) is zero. Introducing (68) for q5az we then 
obtain 

f2.i = -2inKA,,, (1 14) 
f2.j = 2nKA2,. (115) 

Hence the x- and y-components of the second-order oscillatory force also have the 
same amplitudes and a phase difference in. The first part of this result, that the two 
amplitudes are equal, has been observed by Vada (1987) by numerical simulation. 

The results may be extended to oscillations of order m with frequency ww. From 
the Bernoulli equation we find 

p m m  = -diq5mm-iK(Vq5)2, (116) 
where p,, denotes the dynamic pressure. q5 is composed of q5,, q522, , . . , q5,-,, ,-, such 
that the product Vq5-4 is of order m. Similarly as for fi, we show that the last term 
in (118) becomes zero, and we obtain 

f,-i = -miKnAm,, (117) 
f,.j = mKnA,,. (118) 

Hence the x-component and the y-component of the oscillatory force of order m and 
frequency mw have the same amplitudes and a phase differences in. 

A corresponding result is also true for incident bichromatic waves. The Bernoulli 
equation may then be written 

2Kiq5i-iK(Vq51)2, 
W , + W  pi = -- 

0 

where pl denotes dynamic pressure and q5, = q5i1)+q5p), defined in $5,  Exactly as for 
monochromatic waves it follows that the last term gives no contribution and we 
obtain from (101) 

fi.i = -w,+w 2 iKxA;l, (120) w 

Also in this case we obtain that the x- and y-components of the oscillatory force have 
the same amplitudes and a phase difference in. This result is consistent with 
numerical simulations by Friis, Grue & Palm (1991) who find, within the accuracy of 
the code, that the amplitudes are equal. The procedure may be extended to higher 
orders. 

7. Summary and discussion 
This paper discusses the nonlinear wave reflection of &n incident monochromatic 

wave, caused by a circular cylinder submerged in a fluid layer of infinite depth. A 
reflected Fourier mode with frequency ww, m an arbitrary integer, will have 
components of order m, m+ 2, m+ 4, etc. It is shown in the paper that the component 
of order m, which is the dominant part of the mode, is not reflected. Hence for 
m = 1 ,  for instance, the first-order reflection coefficient is zero, but probably not the 
third- or the fifth-order reflection coefficients. These are, however, usually very 
small. 

3-2 
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Also incident bichromatic waves (and briefly multichromatic waves) are studied 
and it is shown that the second-order wave with frequency equal to  the sum of two 
incident frequencies has no reflection. This is most likely not true for the second- 
order wave with difference-frequency. 

It is also shown that the x-component and y-component of the oscillatory force of 
order m and frequency mw have identical amplitudes and a phase difference in. This 
result is also true for the second-order force (and higher-order forces) with frequency 
being the sum of the frequencies of two incident bichromatic waves. 

It should be noted that the derived results are valid for arbitrary submergence of 
the body and arbitrary incident frequencies. 

Our results for m = 2 and 3 are confirmed by laboratory experiments by Chaplin 
(1984). Thus he observes that the reflection of the 2- and 3-harmonic modes is 
negligible if the Keulegan-Carpenter number is unity or smaller. For these two 
harmonic modes he also finds that the x-component and y-component of the 
oscillatory force have the same amplitudes. He does not comment on higher 
harmonic modes, most likely because they are very small in his experiments. Among 
the practical applications of this theoretical investigation are the evaluation of the 
forces on long underwater tube bridges, which it is proposed to construct across 
Norwegian fjords and straits. 

The author would like to  thank Dr John Grue for useful discussions. He also wishes 
to acknowledge the financial support provided by the Norwegian Council for Science 
and the Humanities. 

Appendix 
We consider the integral 

For y' = , logr/r* = 0. Hence G, is replaced by G;, where G;(x, y, x', y', K )  = G'(z, y, 
x', y', 4K). Here G' is defined by (33). From (20) f 2 ( x )  consists of products of $, and 
its x-derivatives. We notice from (61) that #,(x) is a function of x only through terms 
of the type exp ( - ik, x) where k, is positive. f,(z) is then a function of x through terms 
of the type exp ( - i( k, + k,) x) where k, and k, both are positive. Introducing now for 
G, the first integral on the right-hand side of (33) (with K replaced by 4X) and 
integrating over x, we obtain that this part of G, gives a contribution proportional to 
6( - k - k, - k,) where k, k, and k, all are positive. 6 denotes the Dirac &function. 
Hence this contribution is zero and G, in (A 1) may be replaced by the last integral 
in (33). Changing the order of integration (A 1) may be written in the simpler form 

where 
J -a2 
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